1,409 research outputs found

    U(1) Gauge Theory as Quantum Hydrodynamics

    Full text link
    It is shown that gauge theories are most naturally studied via a polar decomposition of the field variable. Gauge transformations may be viewed as those that leave the density invariant but change the phase variable by additive amounts. The path integral approach is used to compute the partition function. When gauge fields are included, the constraint brought about by gauge invariance simply means an appropriate linear combination of the gradients of the phase variable and the gauge field is invariant. No gauge fixing is needed in this approach that is closest to the spirit of the gauge principle. We derive an exact formula for the condensate fraction and in case it is zero, an exact formula for the anomalous exponent. We also derive a formula for the vortex strength which involves computing radiation corrections.Comment: 15 pages, Plain LaTeX, final published versio

    Single vibronic level emission spectroscopic studies of the ground state energy levels and molecular structures of jet-cooled HGeBr, DGeBr, HGeI, and DGeI

    Get PDF
    Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the à A″1-X̃ A′1 electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonicity expressions, which allowed the harmonic frequencies to be determined for both isotopomers. In some cases, lack of a suitable range of emission data necessitated that some of the anharmonicity constants and vibrational frequencies be estimated from those of HGeCl∕DGeCl and the corresponding silylenes (HSiX). Harmonic force fields were obtained for both molecules, although only four of the six force constants could be determined. The ground state effective rotational constants and force field data were combined to calculate average (rz) and approximate equilibrium (rze) structures. For HGeBr rze(GeH)=1.593(9)Å, rze(GeBr)=2.325(21)Å, and the bond angle was fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.6°. For HGeI we obtained rze(GeH)=1.589(1)Å, rze(GeI)=2.525(5)Å, and bond angle=93.2°. Franck-Condon simulations of the emission spectra using ab initio Cartesian displacement coordinates reproduce the observed intensity distributions satisfactorily. The trends in structural parameters in the halogermylenes and halosilylenes can be readily understood based on the electronegativity of the halogen substituent. ACKNOWLEDGMENT

    Incorporating interactive 3-dimensional graphics in astronomy research papers

    Full text link
    Most research data collections created or used by astronomers are intrinsically multi-dimensional. In contrast, all visual representations of data presented within research papers are exclusively 2-dimensional. We present a resolution of this dichotomy that uses a novel technique for embedding 3-dimensional (3-d) visualisations of astronomy data sets in electronic-format research papers. Our technique uses the latest Adobe Portable Document Format extensions together with a new version of the S2PLOT programming library. The 3-d models can be easily rotated and explored by the reader and, in some cases, modified. We demonstrate example applications of this technique including: 3-d figures exhibiting subtle structure in redshift catalogues, colour-magnitude diagrams and halo merger trees; 3-d isosurface and volume renderings of cosmological simulations; and 3-d models of instructional diagrams and instrument designs.Comment: 18 pages, 7 figures, submitted to New Astronomy. For paper with 3-dimensional embedded figures, see http://astronomy.swin.edu.au/s2plot/3dpd

    From Capillary Condensation to Interface Localization Transitions in Colloid Polymer Mixtures Confined in Thin Film Geometry

    Full text link
    Monte Carlo simulations of the Asakura-Oosawa (AO) model for colloid-polymer mixtures confined between two parallel repulsive structureless walls are presented and analyzed in the light of current theories on capillary condensation and interface localization transitions. Choosing a polymer to colloid size ratio of q=0.8 and studying ultrathin films in the range of D=3 to D=10 colloid diameters thickness, grand canonical Monte Carlo methods are used; phase transitions are analyzed via finite size scaling, as in previous work on bulk systems and under confinement between identical types of walls. Unlike the latter work, inequivalent walls are used here: while the left wall has a hard-core repulsion for both polymers and colloids, at the right wall an additional square-well repulsion of variable strength acting only on the colloids is present. We study how the phase separation into colloid-rich and colloid-poor phases occurring already in the bulk is modified by such a confinement. When the asymmetry of the wall-colloid interaction increases, the character of the transition smoothly changes from capillary condensation-type to interface localization-type. The critical behavior of these transitions is discussed, as well as the colloid and polymer density profiles across the film in the various phases, and the correlation of interfacial fluctuations in the direction parallel to the confining walls. The experimental observability of these phenomena also is briefly discussed.Comment: 36 pages, 15 figure

    Structure and Instability of High-Density Equations for Traffic Flow

    Full text link
    Similar to the treatment of dense gases, fluid-dynamic equations for the dynamics of congested vehicular traffic are derived from Enskog-like kinetic equations. These contain additional terms due to the anisotropic vehicle interactions. The calculations are carried out up to Navier-Stokes order. A linear instability analysis indicates an additional kind of instability compared to previous macroscopic traffic models. The relevance for describing granular flows is outlined.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Lithic artifact assemblage transport and micro-wear modification in a fluvial setting: a radio frequency identification tag experiment

    Get PDF
    River processes are widely assumed to have impacted the integrity of lithic assemblages when artifacts are found in fluvial sediments, but the specifics of these influences remain largely unknown. We conducted a real-world experiment to determine how the initial stages of fluvial entrainment affected lithic artifact assemblages. We inserted replica artifacts with Radio Frequency Identification (RFID) tags into a gravel-bedded river in Wales (UK) for seven months and related their transport distances to their morphology and the recorded streamflow. Additionally, nine artifacts were recovered at the end of the experiment and analyzed for micro-wear traces. In sum, our results show that in a gravel bedded river with a mean discharge of 5.1 m3s-1, artifact length and width were the main variables influencing artifact transport distances. The experiment also resulted in characteristic micro-wear traces developing on the artifacts over distances of 485 m or less. These results emphasize the multifaceted nature of alluvial site formation processes in a repeatable experiment and highlight new ways to identify the transport of replica Paleolithic material

    When Models Interact with their Subjects: The Dynamics of Model Aware Systems

    Get PDF
    A scientific model need not be a passive and static descriptor of its subject. If the subject is affected by the model, the model must be updated to explain its affected subject. In this study, two models regarding the dynamics of model aware systems are presented. The first explores the behavior of "prediction seeking" (PSP) and "prediction avoiding" (PAP) populations under the influence of a model that describes them. The second explores the publishing behavior of a group of experimentalists coupled to a model by means of confirmation bias. It is found that model aware systems can exhibit convergent random or oscillatory behavior and display universal 1/f noise. A numerical simulation of the physical experimentalists is compared with actual publications of neutron life time and {\Lambda} mass measurements and is in good quantitative agreement.Comment: Accepted for publication in PLoS-ON

    Geometric frustration and magnetization plateaus in quantum spin and Bose-Hubbard models on tubes

    Full text link
    We study XXZ Heisenberg models on frustrated triangular lattices wrapped around a cylinder. In addition to having interesting magnetic phases, these models are equivalent to Bose-Hubbard models that describe the physical problem of adsorption of noble gases on the surface of carbon nanotubes. We find analytical results for the possible magnetization plateau values as a function of the wrapping vectors of the cylinder, which in general introduce extra geometric frustration besides the one due to the underlying triangular lattice. We show that for particular wrapping vectors (N,0)(N,0), which correspond to the zig-zag nanotubes, there is a macroscopically degenerate ground state in the classical Ising limit. The Hilbert space for the degenerate states can be enumerated by a mapping first into a path in a square lattice wrapped around a cylinder (a Bratteli diagram), and then to free fermions interacting with a single ZN{\bf Z}_N degree of freedom. From this model we obtain the spectrum in the anisotropic Heisenberg limit, showing that it is gapless. The continuum limit is a c=1c=1 conformal field theory with compactification radius R=NR=N set by the physical tube radius. We show that the compactification radius quantization is exact in the projective J⊥/Jz≪1J_\perp/J_z \ll 1 limit, and that higher order corrections reduce the value of RR. The particular case of a (N=2,0)(N=2,0) tube, which corresponds to a 2-leg ladder with cross links, is studied separately and shown to be gapped because the fermion mapped problem contains superconducting pairing terms.Comment: 10 pages, 11 figure
    • …
    corecore